1	Time-series measurements of ²³⁴ Th in water column and sediment
2	trap samples from the northwestern Mediterranean Sea
3	
1	
4	
5	J. Kirk Cochran ¹ , Juan Carlos Miquel ² , Robert Armstrong ¹ , Scott W.
6	Fowler ² , Pere Masqué ³ , Beat Gasser ² , David Hirschberg ¹ , Jennifer Szlosek ¹ ,
7	Alessia M. Rodriguez y Baena ² , Elisabet Verdeny ³ and Gillian M. Stewart ^{1,4}
8	
9	
10	¹ Marine Sciences Research Center, Stony Brook University, Stony Brook, New York
11	11794-5000 USA
12	
13 14	Marine Environment Laboratories, international Atomic Energy Agency, 4 qual Antoine
14	i , wonaco
16	³ Institut de Ciencia i Tecnologia Ambientals- Departament de Fisica, Universitat
17	Autonoma de Barcelona, 08193 Bellaterra, Spain
18	
19 20	[*] Department of Earth and Environmental Sciences, Queens College CUNY, Flushing, New
20 21	YOFK 11367 USA
21 22	
23	
24	
25	*Corresponding author. Tel.: +1 631 632 8733; fax: +1 631 632 3066.
26	E-mail address: <u>kcochran@notes.cc.sunysb.edu</u>
27	

28

29 Abstract

Disequilibrium between ²³⁴Th and ²³⁸U in water column profiles has been used to estimate 30 the settling flux of Th (and, by proxy, of particulate organic carbon); yet potentially major non-31 steady-state influences on ²³⁴Th profiles are often not able to be considered in estimations of 32 flux. We have compared temporal series of ²³⁴Th distributions in the upper water column at both 33 coastal and deep-water sites in the northwestern Mediterranean Sea to coeval sediment trap 34 records at the same sites. We have used sediment trap records of ²³⁴Th fluxes to predict temporal 35 changes in water column ²³⁴Th deficits and have compared the predicted deficits to those 36 measured to determine whether the time-evolution of the two coincide. At the coastal site (327 m 37 water depth), trends in the two estimates of water column ²³⁴Th deficits are in fairly close 38 agreement over the one-month deployment during the spring bloom in 1999. In contrast, the 39 pattern of water column²³⁴Th deficits is poorly predicted by sediment trap records at the deep-40 water site (DYFAMED, ~2300 m water depth) in both 2003 and 2005. In particular, the 41 transition from a mesotrophic to an oligotrophic system, clearly seen in trap fluxes, is not evident 42 in water column ²³⁴Th profiles, which show high-frequency variability. Allowing trapping 43 efficiencies to vary from 100% does not reconcile the differences between trap and water column 44 deficit observations; we conclude that substantial lateral and vertical advective influences must 45 be invoked to account for the differences. 46

Advective influences are potentially greater on ²³⁴Th fluxes derived from water column deficits relative to those obtained from traps because the calculation of deficits in open-ocean settings is dominated by the magnitude of the "dissolved" ²³⁴Th fraction. For observed current velocities of 5 - 20 cm s⁻¹, in one radioactive mean-life of ²³⁴Th, the water column at the 51 DYFAMED site can reflect ²³⁴Th scavenging produced tens to hundreds of kilometers away. In 52 contrast, most of the ²³⁴Th flux collected in shallow sediment traps at the DFYFAMED site was 53 in the fraction settling >200 m d⁻¹; in effect the sediment trap can integrate the ²³⁴Th flux over 54 distances ~40-fold less than water column ²³⁴Th distributions. In some sense, sediment trap and 55 water column sampling for ²³⁴Th provide complementary pictures of ²³⁴Th export. However, 56 because the two methods can be dominated by different processes and are subject to different 57 biases, their comparison must be treated with caution.

- 58 Keywords: Thorium-234, particle fluxes, sediment traps, northwest Mediterranean, non-steady
- 59 state

60

61 **1. Introduction**

Over the past ~ 20 years, the deficiency of the natural radionuclide ²³⁴Th (half-life 24.1 d) 62 with respect to its parent ²³⁸U in the upper water column has increasingly been used to determine 63 the export of particulate organic carbon (POC) from the photic zone (see Cochran and Masqué, 64 2003 and references therein). This approach is based on the scavenging of particle-reactive ²³⁴Th 65 onto biogenic particles in the upper 100-200 m of the oceanic water column, followed by export 66 of the ²³⁴Th as the particles sink. The method usually involves measurement of particulate and 67 dissolved ²³⁴Th profiles in the water column. The flux of ²³⁴Th required to support the deficit of 68 this radionuclide in the water column is converted to a POC flux by multiplying the ²³⁴Th flux by 69 the POC/ 234 Th ratio on sinking particles. In most prior studies, water column 234 Th profiles were 70 determined by sampling with in situ pumps or Niskin bottles, and the $POC/^{234}$ Th on exported 71 particles was taken to be that measured on the $>53 \mu m$ or $>70 \mu m$ particles filtered using in situ 72 pumps (Buesseler et al., 1998, 2001; Cochran et al., 2000; Moran et al., 2003). While the "234Th 73 method" is straightforward in its application, numerous concerns have been identified regarding 74 the details of converting a ²³⁴Th deficit into a POC flux (e.g. Buesseler, 1991; Amiel et al., 2002; 75 Cochran and Masqué, 2003; Moran et al., 2003; Savoye et al., 2006; Buesseler et al., 2006). 76 Such issues include: steady-state vs. non-steady state interpretation of the water column ²³⁴Th 77 profiles, accurate estimation of the POC/²³⁴Th ratio on sinking particles, and lack of agreement 78 between water column-derived ²³⁴Th (and concomitant POC fluxes) and those measured in 79 sediment traps. Despite many applications of the ²³⁴Th method, there have been relatively few 80 comparisons of ²³⁴Th deficits obtained from repeated sampling of ²³⁴Th water column profiles 81 with time-series sediment trap records of the ²³⁴Th flux at the same station. Benitez-Nelson et 82

al. (2001) conducted such a study in the North Pacific and Gustafsson et al. (2004) compared
detailed time-series water column ²³⁴Th deficits with trap records of ²³⁴Th flux in the Baltic Sea.
Both studies compared the two sets of data with a perspective of "calibrating" the sediment trap
fluxes with the water column ²³⁴Th data.

The present paper is one of a series of three that address some of the issues mentioned above 87 concerning the application of ²³⁴Th as a proxy for POC flux. Stewart et al. (2007) compared 88 water column ²³⁴Th deficits (relative to ²³⁸U) with ²¹⁰Po deficits (relative to ²¹⁰Pb) at the 89 DYFAMED site (northwestern Mediterranean Sea; water depth ~2300 m) as indicators of POC 90 flux. Stewart et el. (2007) also compared POC fluxes calculated from the radionuclide deficits 91 using POC/²³⁴Th (or POC/²¹⁰Po) ratios obtained from in situ filtration of particles vs. moored 92 sediment traps. Szlosek et al. (this volume) consider the controls on POC/²³⁴Th ratios in 93 94 particles at the DYFAMED site separated according to settling velocity. Here we focus on temporal changes in water column ²³⁴Th profiles and fluxes based on the integrated ²³⁴Th 95 deficiency in the upper water column at the DYFAMED site, as well as at a coastal site (depth 96 \sim 370 m) in the northwestern Mediterranean Sea, and compare these fluxes with those recorded in 97 sediment traps over the same time interval. Our goals are to compare the different measures of 98 ²³⁴Th flux and to consider discrepancies in the context of non-steady-state processes. 99

100 **2. Methods**

101 2.1. Sample Collection: Coastal site

Sampling occurred during the spring bloom in March-April, 1999 at a station (water
 depth 370 m) in the Mediterranean off Monaco (Fig. 1). All sampling was conducted within the
 area 43° 41.81' to 43° 41.90'N and 7° 26.60 to 7° 26.98'E. Three French-produced Technicap
 sediment traps were deployed at 170 m on separate moorings within a few hundred meters of one

another (Fig. 1). The traps, designated 3, 4 and 5 corresponded to Technicap models PPS-3, PPS-4 and PPS-5. Traps 3 and 4 were cylindro-conical, with collection areas of 0.125 m^2 and 0.05 m^2 , respectively. Trap 5 was of conical design with a collection area of 1 m^2 . Each trap contained a rotating sample carousel that collected one sample every two days. The traps were deployed for a 24-day period from March 11 to April 2, 1999. The trap cups were poisoned with buffered formalin.

Sampling in the water column occurred at approximately weekly intervals during 112 sediment trap deployment. Due to wire limitations on the vessel used for water column 113 sampling, only the upper 90 m was sampled. Deeper samples were collected during recovery of 114 the traps at the end of the one-month deployment. Samples for ²³⁴Th were collected using 115 Challenger Oceanic battery-operated in situ pumps. Pumps were outfitted with prefilters 116 including either a filter stack consisting of a 142 mm diameter Teflon mesh (70 µm) followed by 117 118 a 142 mm diameter quartz microfiber filter (QM-A; 1 µm) or a single 293 mm diameter glass fiber GF/F filter (0.7 µm). Each pump included two Hytrex acrylic filter cartridges impregnated 119 with manganese oxide to retain dissolved ²³⁴Th (Livingston and Cochran, 1987). Profiles of 120 temperature, salinity and fluorescence were obtained by CTD casts after collection of pump 121 samples. 122

123 2.2. Sample Collection: DYFAMED site

As part of the MedFlux program, sampling was conducted in 2003 and 2005 at the French JGOFS time-series DYFAMED site (43° 25'N, 7° 52'E; water depth 2300 m) in the Mediterranean Sea, ~52 km off Nice (Fig. 1). A mooring that included an indented rotating sphere (IRS) time series sediment trap (Peterson et al., 1993) with a target depth of 200 m was deployed March 6, 2003, recovered in early May, and re-deployed until June 30. In 2005, the trap was deployed from March 4 through April 28. Sample cups integrated the flux over 5-6 days
during the first deployment and 4-5 days during the second deployment in 2003, and 5 days
during the 2005 deployment. Actual depths of the traps, determined after recovery, were 238 m
for March-May 2003, 117 m for May-June 2003 and 313 m for March-April 2005. The IRS
traps exclude swimmers by collecting particles initially onto a rotating sphere with depressions
that allow the particles but not macrozooplankton to sink into the carousel below the sphere
(Peterson et al., 1993). All trap cups were poisoned with mercuric chloride.

Sampling in the water column occurred in March, May and June 2003 and March and 136 April 2005; sampling depths are indicated in Table 1. Samples for ²³⁴Th were collected using 137 Challenger Oceanic battery-operated in situ pumps (2003 and 2005) and Niskin bottles deployed 138 on a rosette (2005). In 2003, pumps were outfitted with prefilters including filter stacks 139 consisting of a 142 mm diameter Teflon mesh (70 µm) followed by a 142 mm diameter quartz 140 141 microfiber filter (QM-A; nominal 1 µm) or 293 mm diameter Nitex mesh (70 µm) followed by a glass fiber GF/F filter (0.7 µm). In 2005, all pumps used Teflon mesh and QM-A filters. Each 142 pump included two Hytrex acrylic filter cartridges impregnated with manganese oxide to retain 143 dissolved ²³⁴Th (Livingston and Cochran, 1987). Pumps were operated for approximately 2 hours 144 and filtered 500 – 1000 L. CTD casts were taken shortly before or after the pump casts for 145 determination of hydrography. 146

147 2.3. 234 *Th analysis*

The Teflon prefilters from the in situ pumps were rinsed with filtered seawater to remove the particles, and were then re-filtered onto 25 mm QM-A filters and dried. The large diameter GF/F or QM-A filters from the pumps were dried and 21 mm punches were taken from the filter for ²³⁴Th determination (equivalent to 48.8% of the 142 mm filter and 10.3% of the 293 mm

filter). The filters were placed in sample cups, either mounted singly in the case of the rinsed 152 Teflon screens or stacked in the case of multiple punches from the GF/F or QM-A filters. Splits 153 154 from the sediment trap cups were filtered onto 25 mm 0.4 µm Nuclepore filters, dried and mounted on sample cups in the same geometry as the $>70 \,\mu\text{m}$ particles from the pumps. The 155 cups were covered with plastic film and aluminum foil and beta counted at either the Stony 156 Brook University Marine Sciences Research Center (MSRC) or IAEA- Marine Environment 157 Laboratories (MEL) using Risø low background beta counters to measure the ²³⁴Th activity 158 (Buesseler et al., 1998, 2001; Cochran et al., 2000). In a few cases, the rinsed Teflon filter was 159 sampled by taking punches and mounting them in a manner similar to the other samples. No 160 residual beta activity was detected above background, and we conclude that the rinsing 161 procedure was effective. 162

Samples were counted at least twice to a counting error of <5% to resolve ²³⁴Th decay 163 and correct for any long-lived beta activity on the filters as well as the filter blank. All activities 164 were decay-corrected to the time of sample collection. The beta counting efficiency (0.41 for 165 single filters and 0.25 for stacked filters; precisions were approximately $\pm 5\%$, depending on 166 laboratory) was determined by evaporating a small aliquot of ²³⁸U standard in equilibrium with 167 ²³⁴Th onto 21 mm filter punches and mounting the punches for counting in the same manner as 168 the samples. Generally, 234 Th activities in the >70 µm fraction were only a few percent of those 169 in the 1-70 μ m fraction. Here we report the total particulate ²³⁴Th (>1 μ m). Details of the size-170 fractionated ²³⁴Th and the relationship between particulate ²³⁴Th and POC are reported elsewhere 171 (Stewart et al., 2007; Szlosek et al., this volume). 172

The manganese cartridges were dried, ashed in a muffle furnace at 450° C and the ash was then transferred into containers for counting. The ash was counted on intrinsic germanium

gamma detectors, and ²³⁴Th was measured using its 63.3 keV gamma emission. Standards were 175 prepared by ashing cartridges that contained a known amount of ²³⁸U in secular equilibrium with 176 ²³⁴Th (Cochran et al., 1995; Rutgers van der Loeff et al., 2006). Manganese cartridge samples 177 178 collected in 2003 were counted either at IAEA-MEL or MSRC, whereas those collected in 2005 were all counted at MSRC. The counting procedure was slightly different in the two 179 laboratories: at IAEA-MEL, an aliquot comprising ~70% of the ashed cartridge was counted in a 180 well detector whereas at MSRC the entire ash was counted on a planar germanium detector. 181 Dissolved activities were determined based on the gamma activity on the first and second 182 manganese cartridges in series, using the method of Livingston and Cochran (1987). Errors 183 include counting errors and propagated errors on the counting efficiency. 184

Small-volume samples were collected from Niskin bottles in 2005 and total ²³⁴Th was 185 determined using a modification of the method of Rutgers van der Loeff and Moore (1999) and 186 Buesseler et al. (2001). ²³⁰Th was added as a yield tracer and Th was scavenged by precipitating 187 MnO₂ in the samples. The precipitate was filtered onto 25 mm diameter QM-A filters and 188 mounted for beta counting as described above. Samples were counted several times at the 189 Autonomous University of Barcelona to follow the decay of ²³⁴Th. Subsequently they were 190 processed radiochemically (with the addition of ²²⁹Th as a second yield tracer) to determine the 191 recovery of Th in the MnO₂ precipitate. The purified Th was electroplated and alpha counted, 192 obtaining recoveries that were generally >85%. 193

Cai et al. (2006) have recently questioned dissolved Th activities obtained by pumps. Their analyses of 8 samples from the South China Sea showed offsets between pump and small volume total ²³⁴Th activities, as well as pump ²³⁴Th activities that were less than the ²³⁸U activity in deep waters. Our 2005 data permit a comparison of the total ²³⁴Th activities determined on

198	samples collected by both pump and Niskin bottle. We are also able to compare total ²³⁴ Th
199	activities in deep water with the ²³⁸ U activity. ²³⁸ U at the DYFAMED site was determined on 18
200	samples collected on March 13, 2005 over depths ranging from 25 to 2000 m. Samples were
201	analyzed at IAEA-MEL by sector field ICP-MS using isotope dilution with ²³⁶ U (Wyse et al.,
202	2006); values ranged from 2.68 – 2.72 dpm L^{-1} (mean ± 1 σ = 2.70 ± 0.01 dpm L^{-1}). This value is
203	in agreement with that expected from the relationship between U and salinity obtained by Chen
204	et al. (1986), as re-interpreted by Pates and Muir (2007). The Chen et al. (1986) U/salinity
205	relationship (238 U = 2.458 dpm L ⁻¹ for 35‰ salinity; Pates and Muir, 2007) predicts 238 U
206	activities of $2.68 - 2.71$ dpm L ⁻¹ for salinities observed at the DYFAMED site. Speicher et al.
207	(2006) used ICP-MS to determine ²³⁸ U values for the Ligurian, Tyrrhenian and Aegean Seas and
208	confirmed that the Chen et al.(1986) relationship between U and salinity held for these areas.
209	Pates and Muir (2007) made additional measurements of ²³⁸ U in the open Mediterranean and
210	suggested a U/salinity relationship slightly different from that of Chen et al. (1986) that yields
211	238 U activities of 2.71 – 2.75 dpm L ⁻¹ for the DYFAMED site. In calculating 234 Th deficits at the
212	DYFAMED site, we use our directly measured ²³⁸ U value (2.70 dpm L ⁻¹). Salinities were
213	slightly lower at the coastal site, and 2.65 dpm ²³⁸ U L ⁻¹ , obtained from the Chen et al. (1986)
214	U/salinity relationship, was used for calculating ²³⁴ Th deficits. The mean total ²³⁴ Th determined
215	at the DYFAMED site from pump samples >400 m in 2005 (n=8) depth is 2.59 ± 0.15 dpm L ⁻¹ .
216	The mean 234 Th determined on small volume samples >400 m depth (n=22) is comparable, 2.67
217	\pm 0.14 dpm L ⁻¹ . Both are in agreement within the uncertainty with the ²³⁸ U activity.
218	We are also able to compare pump and small-volume total ²³⁴ Th on casts taken close in
219	time in 2005 (March 9 and March 13/14). The samples span depths from 5 to 1500 m and the

data scatter about a 1:1 line with no systematic offset (plot not shown). Pump and small-volume

²³⁴Th data from many locations (including the DYFAMED 2005 data) are compared by Hung et 221 al. (2008) and show no significant offsets. Hung et al. (2008) conclude that manganese oxide-222 impregnated cartridges, when properly prepared and analyzed, yield reliable values for 223 "dissolved" Th in seawater. In particular, we strongly recommend that cartridges be ashed for 224 gamma spectrometric analysis of ²³⁴Th. This method is preferable to wet chemical extraction 225 techniques (Cai et al., 2006) in that it ensures complete recovery of the Th retained on the 226 cartridge. This procedure also facilitates making a suitable standard, which is best prepared by 227 adding ²³⁴Th in equilibrium with ²³⁸U to a manganese oxide-impregnated cartridge and ashing 228 229 the cartridge.

3. Results

231 *3.1. Coastal site*

Figure 2a-c shows temperature, salinity and fluorescence profiles at four times 232 (approximately weekly) during the one-month trap deployment in 1999. Temperature was 233 relatively constant with depth during the first three weeks of sampling, increasing progressively 234 from March 11 until March 24 before showing a significant decrease from March 24 to March 235 31. Salinity decreased from March 11 to March 19, increased on March 24 and showed a 236 significant decrease in the upper 40 m between March 24 and March 31. Fluorescence profiles 237 were similar on March 11 and 31, with a maximum between 20-40 m. Fluorescence increased 238 throughout the upper 80 m between March 11 and March 19. Values from 50 - 80 m remained 239 high on March 24, but decreased in the upper 50 m. 240

Water column ²³⁴Th profiles are shown in Fig. 3 (Table 1). Total particulate ²³⁴Th activities (>1 μ m) were high (~0.3 – 0.4 dpm l⁻¹) in the March 11 and 19 profiles, and decreased to <0.3 dpm l⁻¹ in the profiles taken on March 24 and 31. Total ²³⁴Th (particulate + dissolved)

was highest at the outset of sampling (Fig. 3a). A mid-depth minimum in total ²³⁴Th, coincident 244 with the fluorescence maximum, was evident by the second sampling (Fig. 3b). Significant 245 water column deficits in ²³⁴Th were evident in all four profiles; the deficits increased between 246 samplings on March 11 and 19, decreased between March 19 and 24, then increased again from 247 March 24 to 31 (Table 3). Data from sampling between 120 and 200 m at the end of the 248 sediment trap deployment (Table 1) suggest that deficits extended at least to 200 m at that time. 249 Although the fluxes of ²³⁴Th recorded in the three sediment traps often agreed quite 250 closely, at times they differed by a factor of 2 (Table 2). No systematic offset was observed, 251 such that the flux recorded in one type of trap was consistently greater or less than another. For 252 purposes of comparing the trap and water column data (see below), we use the average flux from 253 the three traps at any given time. The time series record of average fluxes shows that values are 254 relatively constant over the first \sim 3 weeks, 3070 ± 700 dpm m⁻² d⁻¹ from March 11-29, but 255 decreased progressively to ~600 dpm $m^{-2} d^{-1}$ from March 29 to April 2. 256 3.2. DYFAMED site 257 The hydrography of the DYFAMED site during the time of our sampling in 2003 has 258 been discussed in detail by Stewart et al. (2007). Important water masses in the upper few 259 hundred meters include surface water (Modified Atlantic Water, MAW) and Levantine 260 Intermediate Water (LIW). In addition, Winter Intermediate Water (WIW) can be formed in the 261 winter and spring by cooling of surface water by northwesterly winds (Fieux, 1974; Conan and 262 263 Millot, 1995; Millot, 1999). WIW is displaced below MAW after cessation of the winds. T-S diagrams show the presence of WIW at ~60 m in early March 2003. In 2005, detailed 264 hydrographic data are available only during the trap deployment cruise in March. A strong 265 increase in salinity (and σ_t) is evident in the upper 200 m, occurring between March 11 and 266

13/14 (Fig. 4a). Increases in fluorescence are also evident on March 14, relative to the preceding
period (March 8-13; Fig. 4b).

The water column ²³⁴Th profiles (Table 1; Figs. 5-6) generally show deficits of 269 ²³⁴Th relative to ²³⁸U in the upper 100 m at all sampling times in 2003 and 2005. In 2003, total 270 particulate ²³⁴Th activities (>1 µm) were greatest during the June sampling, and in the May and 271 June profiles, displayed a maximum at \sim 50 m. This maximum was coincident with the 272 fluorescence (chlorophyll a) maximum. In 2005, particulate Th data are available only from the 273 pump casts on March 9 and 13. The March 13 profile shows a distinct particulate ²³⁴Th 274 maximum at ~25 m, also coincident with the pronounced maxima in the fluorescence profiles 275 that developed March 13/14 (Fig. 4b). 276

Data on composition of the trap material and fluxes of mass, POC and major components 277 (CaCO₃, biogenic silica, lithogenic material) in IRS traps deployed in 2003 and 2005 are given 278 elsewhere (Lee et al., this volume). During the first trap deployment in 2003 (March-May, 238 279 m), maximum fluxes of 234 Th (~2300 dpm m⁻² d⁻¹; Table 2), as well as mass and particulate 280 organic carbon, occurred in early March. These corresponded to high fluxes of diatom 281 aggregates and zooplankton fecal pellets (Lee et al., this volume; Wakeham et al., this volume). 282 ²³⁴Th fluxes decreased in late March to about 25% of the maximum values and remained at that 283 level until early May, when the trap was recovered. At the beginning of the second deployment 284 (May-June, 117 m), 234 Th fluxes were ~500 dpm m⁻² d⁻¹ and decreased to low values (~10 dpm 285 m⁻² d⁻¹) by June. This latter period included bacterially degraded phytoplankton cells. (Wakeham 286 et al., this volume) No flux data are available for early May while the trap mooring was being 287 288 recovered and re-deployed.

In 2005 the shallow IRS trap was deployed at 313 m for only ~2 months (March-April). The pattern of 234 Th fluxes was somewhat different than in 2003, with maxima (~2500 dpm m⁻² d⁻¹) in both early and late March (Table 2). Fluxes dropped to values of ~70 dpm m⁻² d⁻¹ by late April. Such low fluxes were not evident until June in 2003, but the different timing of bloom and dust events (Lee et al., this volume), as well as different trap deployment depths, in 2003 and 2005 make it difficult to compare the records rigorously.

295

296 **4. Discussion**

297 4.1. Estimating ²³⁴Th fluxes

Application of ²³⁴Th-²³⁸U disequilibrium in the water column for estimating POC fluxes 298 requires determining the ²³⁴Th deficit, and logistical constraints on ship time frequently result in 299 the deficit being determined from a single water column profile at a station. Conversion of the 300 ²³⁴Th deficit into a reliable local ²³⁴Th flux involves an understanding of the extent to which the 301 ²³⁴Th profile is in steady state and is dominated by local processes (e.g. uptake onto particles 302 produced and sinking locally), information that is often lacking. Here we are able to compare 303 ²³⁴Th fluxes suggested by water column ²³⁴Th deficits and those measured in sediment traps at 304 the same time. 305

The time-rate-of-change of 234 Th in the water column is given by

307

$$\frac{\partial A_{Th}}{\partial t} = \lambda_{Th} A_U - \lambda_{Th} A_{Th} - F_{Th} + V \tag{1}$$

309

310 where A_U and A_{Th} are the ²³⁸U and total (particulate + dissolved) ²³⁴Th activities

311 (dpm m⁻²), respectively, integrated over some depth z, λ_{Th} is the ²³⁴Th decay constant, F_{Th} is the 312 flux of total ²³⁴Th through depth z (dpm m⁻² d⁻¹) and V is the sum of advective and diffusive 313 transport.

A common approach to calculating ²³⁴Th fluxes from water column deficits is to assume steady state ($\partial A_{Th}/\partial t = 0$) and negligible *V*, in which case the ²³⁴Th flux is

316

$$317 F_{Th} = \lambda_{Th} D (2)$$

318

where *D* is the water column ²³⁴Th deficit (dpm m⁻²) between depths z = 0 and $z = z_{max}$, defined as

321

 $D = \int_{0}^{z_{\text{max}}} [A_U - A_{Th}(z)] dz$ (3)

323

²³⁴Th deficits (Table 3) for each profile were calculated using trapezoidal integration and 324 325 propagation of measurement errors (Rutgers van der Loeff et al., 2006). In practical terms, the integration uses the difference between the 238 U activity and measured 234 Th activity (dpm m⁻³ at 326 any given depth z integrated over the depth interval (m) spanning the mean distance between 327 depths z and z-z_u and z and z+z_l (where z_u and z_l represent the sampling depths above and below 328 z, respectively). Integration of the Th water column deficits at the DYFAMED site was done to 329 depths corresponding most closely to the sediment trap deployments: 200 m for March-May, 330 2003, 100 m in May-June, 2003 and 300 m in March-April, 2005 (Table 3). For the coastal site, 331 ²³⁴Th was integrated over the depth of the water column profile (90 m). 332 For a flux regime such as a bloom, in which the Th flux may be expected to be low 333

initially, increase with time and then decrease, the water column ²³⁴Th deficit will track the flux

such that deficits will increase and decrease. Under such conditions, and assuming no horizontal advection, the rate of change of D may be expressed as

337
$$\frac{dD}{dt} = -\lambda_{Th}D + F(t)$$
(4)

338 where F(t) is the flux of ²³⁴Th activity (dpm m⁻² d⁻¹) through the surface $z = z_{\text{max}}$.

339 Equation (4) illustrates the fact that while there may be large short-term changes in Th flux, the water column Th deficit has a "memory" of previous scavenging events that produced a 340 deficit (D in Eq. 4). The decay term $(-\lambda_{Th}D)$ in Eq. (4) effectively serves to smooth out the 341 variation in water column deficit relative to the pattern of flux recorded in a trap. This 342 observation can be demonstrated by a thought experiment in which the sinking flux of ²³⁴Th is 343 initially high, such as during or immediately after a bloom, then is rapidly reduced to zero as the 344 bloom subsides. The water column ²³⁴Th deficit caused by this flux will not decrease 345 immediately, but instead will decrease at a rate determined by the half-life of ²³⁴Th as it grows 346 toward equilibrium with ²³⁸U. Indeed, this idea was expressed by Ku and Musakabe (1990) in 347 348 their analysis of the bias introduced into estimations of apparent mean residence time with respect to scavenging for natural radionuclides of differing half-life after a transient removal of 349 one-half of the radionuclide inventory from surface water. We can test this idea with the present 350 data by solving Eq. (4) for the ²³⁴Th deficit, and then use the high-temporal resolution record of 351 ²³⁴Th fluxes recorded in the trap to determine whether the pattern of observed water column 352 353 deficits is consistent with that expected from the trap flux. Integrating Eq. (4) produces the nonsteady state prediction of the change in ²³⁴Th deficit with time: 354

355

356
$$D(t_0 + T) = D(t_0)e^{-\lambda_{Th}T} + \int_{t_0}^{t_0 + T} e^{\lambda_{Th}(t_0 + T - t)}F(t)dt$$
(5)

where t_0 is the starting time of the integration interval and T is its duration. Here the first term 358 on the right hand side reflects decay of the ²³⁴Th deficit present at t_0 , and the second term is the 359 introduction of new deficit through thorium export, weighted for decay between export at time t 360 and the end of the interval at $t_0 + T$. In applying Eq. (5) to data, we assume that the ²³⁸U activity 361 is constant with time. Given the relatively small range in salinity observed with time at the 362 DYFAMED site, this assumption is reasonable. Indeed, as the estimates of dissolved ²³⁸U cited 363 in section 2.3 suggest, 238 U is expected to vary by ~1% for the range of salinities observed. 364 A piecewise solution for Eq. (5) can be obtained by assuming that flux F_i is constant 365 between two successive times t_i and t_{i+1} in a flux record (e.g. midpoints of collection for two 366 adjacent trap cups): 367

368

369
$$D(t_{i+1}) = D(t_i)e^{-\lambda_{Th}(t_{i+1}-t_i)} + (F_i / \lambda_{Th})(1 - e^{-\lambda_{Th}(t_{i+1}-t_i)})$$
(6)

Eq (6) is then used to produce the deficit estimates used in Figs. 7, 9, and 11. Eq. (6) can also be inverted to give estimated fluxes \hat{F}_i for each time interval:

372

373
$$\hat{F}_{i} = \lambda_{Th} \frac{D(t_{i+1}) - D(t_{i})e^{-\lambda_{Th}(t_{i+1}-t_{i})}}{1 - e^{-\lambda_{Th}(t_{i+1}-t_{i})}} ;$$
(7)

Eq. (7) is used to produce the flux estimates in Figs. 8, 10, and 12.

Eq. (7) is effectively that developed by Buesseler et al. (1992) to estimate non-steady fluxes from water column ²³⁴Th deficits that were changing with time. However, the time interval $t_{i+1} - t_i$ in the case of Buesseler et al. (1992) and others who have used this formulation (see Savoye et al., 2006) was of the order 1-4 weeks, much longer than the temporal resolution

afforded by traps in our experimental settings. In contrast, our sediment trap data provide a 379 detailed temporal record (over 2-5 day intervals) of the 234 Th flux, F in Eqs. (5) and (6), at the 380 coastal site and DYFAMED site. We use this record in Eq. (6) to predict the ²³⁴Th deficit that 381 should be observed in the water column above the trap depth, under the assumption that the 382 observed deficit is produced locally by scavenging of ²³⁴Th onto sinking particles caught in the 383 trap. Any differences between the water column deficit implied by the trap fluxes (using Eq. 6) 384 and measure water column deficits must then be explained by factors such as trapping efficiency 385 or advective influences on dissolved and particulate ²³⁴Th, as discussed below. 386

For each time point *i*, we calculated the likelihood component $L_i(t_i)$, the probability that the measured water column ²³⁴Th deficit *i* could have been produced by Eq. (8) using a given set of parameters (see below):

390

391
$$L_{i}(t_{i}) = \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \exp\left(-\frac{(D_{i}(t_{i}) - \hat{D}(t_{i}))^{2}}{2\sigma_{i}^{2}}\right)$$
(8)

392

(Edwards 1992; Hilborn and Mangel 1997). Here $D_i(t_i)$ is the measured water column ²³⁴Th deficit at time t_i , and $\hat{D}_i(t_i)$ is the prediction of $D_i(t_i)$ that is implied by the trap fluxes (Eq. 6) Eq. (8) also reflects the assumption that errors are distributed normally with variance σ_i^2 ; this variance is calculated for each water column ²³⁴Th deficit *i* as the sum of a the estimated measurement error of var($D_i(t_i)$) and an (assumed constant) "environmental variance" σ_{env}^2 that accounts for other "error-producing" processes, such as small-scale and mesoscale advection,:

400 $\sigma_i^2 \equiv \operatorname{var}(D_i(t_i)) + \sigma_{env}^2$ (9)

Estimating $\hat{D}_i(t_i)$ required estimating three parameters: an initial deficit $\hat{D}(0)$; an environmental variance σ_{env}^2 ; and a constant multiplier α to account for possible biases in trap collection efficiency. The equations used were

405

401

 $\hat{D}_{j}(t_{j}) = \hat{D}(0) + \alpha \sum_{t_{i}=0}^{t_{i+1}=t_{j}} \Delta \hat{D}(t_{i}, t_{i+1})$ (10)

407 and, from Eq. (6),

408

409
$$\Delta \hat{D}(t_i, t_{i+1}) \equiv \hat{D}_{i+1}(t_{i+1}) - \hat{D}_i(t_i).$$
(11)

410 Finally the likelihoods for the individual water column measurements (Eq. 8) are411 combined as

$$L = \prod_{i=1}^{n} L_i \tag{12}$$

and the parameters $\hat{D}(0)$, σ_{env}^2 , and α are estimated using a program that finds the values of those parameters that maximize the value of *L* in Eq. 12 (see, e.g., Metropolis et al., 1953; Hurtt and Armstrong, 1994).

One point deserves special attention: the requirement that the initial condition $\hat{D}(0)$ and a must be estimated makes the mean estimate of the deficit derived using Eqs. (10) and (11) track the average of measured water column deficits. This fact in turn implies that the comparison of the two estimates is made by comparing their time-evolution, not their mean values.

421 *4.2. Comparing traps and water column*²³⁴*Th deficits and fluxes: coastal site*

422 Figure 7 shows the water column ²³⁴Th deficits, $\hat{D}_i(t_i)$, predicted from the trap flux record 423 at 170 m over the ~1 month deployment (dashed line), calculated using Eq. (6). The measured

water column Th deficits (0-90 m), $D_i(t_i)$, at the four sampling times are shown for comparison. 424 Although the traps were deeper than the depth of integration for the water column Th profiles. 425 the measured deficits bracket those predicted from the trap fluxes, with the first and third 426 measurements lying below, and the second and fourth lying above, the trap-predicted values. 427 The pattern of predictions of $\hat{D}_i(t_i)$ devolves directly from the trap record, which shows little 428 change in flux for approximately three weeks, then a decline in the fourth week. The predicted 429 water column ²³⁴Th deficit increases slightly during the first three weeks of the record, under 430 conditions of relatively constant ²³⁴Th flux (Table 2; Fig. 7). As expected, the predicted water 431 column²³⁴Th deficit toward the end of the record changes more slowly with time than the trap 432 flux because of the effective lag produced by the radioactive mean-life of 234 Th (1/ λ_{Th} or 34.8 433 days). Therefore, although the trap Th flux decreases by ~80% during the last 4 days of sampling 434 (Table 2), the predicted water column deficit decreases only slightly in this interval (Fig. 7). 435 Under conditions of low or zero 234 Th flux (F(t) = 0 in Eqs. 5 and 6), the deficit would continue 436 to decrease, approaching zero as ²³⁴Th approaches equilibrium with ²³⁸U. 437 The water column ²³⁴Th deficits are generally consistent with the trap record in this 438 instance. Indeed, Fig. 8 shows that steady-state ²³⁴Th fluxes calculated from the water column 439 deficits (Eq. 2) agree well with trap fluxes for the first three profiles. However, the deficits do 440 441 vary significantly from one profile to the next (Table 3). Figure 8 shows the effect of these variations on non-steady state fluxes of Th calculated using Eq. (7), where the times t_i and t_{i+1} 442 are times of water column sampling. The non-steady- state fluxes predicted from the change in 443 444 deficit between March 11 and 18 and especially between March 18 and 24, diverge strongly from the trap record. In particular, the decrease in deficit between the March 18 and 24 profiles 445 requires a negative ²³⁴Th flux (i. e., addition of ²³⁴Th to the water column). Such a pattern 446

demonstrates the sensitivity of calculations made using Eq. (7) to relatively small variations in
deficit, especially when water column profiles are taken closely in time. This sensitivity was
pointed out by Savoye et al. (2006) in their review of approaches to reconstructing non-steady
state ²³⁴Th fluxes from water column ²³⁴Th deficits.

An additional factor may be advective influences on the profiles. The hydrography (Fig. 451 4) shows significant increases in T and S and decreases in fluorescence between March 18 and 452 24 that depart from the sequence of changes resulting from seasonal temperature variation and 453 progression of the spring bloom, as indicated by T, S and fluorescence data at the other three 454 sampling times. Finally, the water column ²³⁴Th profiles include only the upper 90 m of the 455 water column while traps were deployed at 170 m. Although ²³⁴Th deficiencies are frequently 456 greatest in the upper ~ 100 m, there may be deficits at greater depths. Water samples taken at 457 100-200 m on April 7, 1999 suggest that the deficit extended deeper than 90 m at that time 458 (Table 1). If the temporal change in deficit from 90 - 170 m tracked that in 0-90 m, the general 459 agreement between the observed and predicted pattern of increasing ²³⁴Th deficits in response to 460 a sustained and nearly constant flux of ²³⁴Th as recorded in the traps still obtains. However, the 461 ²³⁴Th flux recorded by the traps would be less than that predicted from the deficits, on average. 462 This may be due to a trapping efficiency that is constant with time but less than 100%. The 463 general similarity of fluxes recorded by three very different trap designs makes this seem 464 unlikely, but it is difficult to fully assess this possibility without more complete sampling of the 465 water column. This emphasizes the importance of determining deficits to the same depth at 466 which trap fluxes are measured for optimum comparison of the two estimates of ²³⁴Th flux. 467 Sampling at the DYFAMED site was designed with this strategy in mind. 468

469 4.3. Comparing traps and water column ²³⁴Th deficits and fluxes: DYFAMED site

470	Measured ²³⁴ Th deficits at the DYFAMED site in 2003 increase from early March to
471	higher values in May and June (Fig. 9). As noted earlier, the sediment trap fluxes are highest in
472	early to mid- March, during the first trap deployment (at 238 m), with values decreasing sharply
473	until early May (Table 2; Fig. 10). The second deployment in 2003 (at 117 m) shows fluxes in
474	May comparable to those at the end of the first deployment, decreasing to low values by late
475	June (Table 2; Fig. 10). It is not possible to use Eq. (6) directly to predict the water column
476	234 Th deficits that are consistent with the trap fluxes throughout the entire ~4 months of the trap
477	record because the depth of trap deployment changed between deployments. The offset in the
478	trap-predicted curves of ²³⁴ Th deficit with time in Fig. 9 is produced by scaling the values in the
479	second deployment to the mean ratio (~0.6; Table 3) of the Th deficit in the upper 100 m to that
480	in the upper 200 m in early May, when the trap turnaround occurred. The lower curve in Fig. 9
481	is the best fit obtained by fitting the trap fluxes to observed water column deficits; the upper
482	curve is a best fit obtained by adding a constant scaling factor (α in Eq. 10) to the trap record.
483	The latter (with a scaling factor of 2.1) fits the water-column ²³⁴ Th deficits significantly better,
484	because its log(likelihood) is more than two units greater than the curve obtained without
485	scaling. In effect this scaling assumes that the trapping efficiency is \sim 50%, and in this case the
486	water column ²³⁴ Th deficit in March and in early May lie on the curve. Neither predicted curve
487	reproduces the high ²³⁴ Th deficit in late June. Indeed, trap ²³⁴ Th fluxes had dropped to near zero
488	by that time and, even allowing for the temporal lag in variation in the water column deficit
489	produced by the 34.8-day mean life of ²³⁴ Th, the trap record predicts low water column deficits
490	$(<1 \times 10^4 \text{ dpm m}^{-2})$ by late June.

491 Another feature of the measured water column 234 Th deficits evident in Fig. 9 is the 492 temporal variability over a few days in early May. Values (0-200 m) vary from 3.9 x 10⁴ to 5.6 x

 10^4 dpm m⁻², but do overlap within errors. Stewart et al. (2007) examined this time interval in 493 detail in the context of comparing ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb estimations of POC flux. They 494 observed considerable variability in surface chlorophyll as indicated by satellite observations. In 495 particular, satellite data showed a shift from low temperature-high chlorophyll surface water on 496 May 7 to higher temperature-lower chlorophyll water on May 8 which persisted until May 13. 497 While the satellite data are representative only of surface water, this pattern corresponds closely 498 to the decrease in Th deficit from high values on May 7 to lower values on May 11 and 13. 499 Steady-state ²³⁴Th fluxes calculated from measured water column ²³⁴Th deficits using Eq. 500 (2) also do not correspond well to the fluxes recorded in the traps (Fig. 10); deficit-derived fluxes 501 are lower than the trap fluxes by a factor of \sim 3 for the March water column deficit, are greater by 502 a factor of \sim 3 for the May profiles and are greater by a factor of \sim 150 in June. In addition, the 503

time between measured ²³⁴Th profiles is generally long (except in early May, when it is only a few days) so that the non-steady state fluxes calculated from the water column ²³⁴Th deficits (Eq. 7; shown as horizontal dashed lines in Fig. 10) are essentially those given by the second profile for any given pair of profiles. That is, Eq. 7 reduces to the steady-state estimation of flux from the deficit at time = t + 1, $\hat{F}_i \approx \lambda D(t_{i+1})$, because the time difference between water column profiles ($t_{i+1} - t_i$) is long relative to $1/\lambda_{\text{Th}}$. We have not attempted to calculate non-steady state fluxes for the short-term variation in water column deficits in early May because of the short

The 2005 data show a similar discrepancy between the pattern of trap 234 Th fluxes and water column deficits (Figs. 11 and 12). Deficits (calculated to 300 m to match the trap depth) increased from the March 2 profile (2.4 x 10⁴ dpm m⁻²) to the deficits indicated by the smallvolume and pump-derived profiles on March 9 (9.3 x 10⁴ dpm m⁻² and 6.7 x 10⁴ dpm m⁻²,

times between profiles and the consequent large errors (Savoye et al., 2006).

respectively; Fig. 11). Deficits ranged by a factor of 7 over the five days of sampling between
March 9 and March 14, and then dropped to low values on April 29. Indeed the deficit was
negative on April 29, largely due to surpluses of ²³⁴Th relative to ²³⁸U in the 200-300 m depth
interval (Fig. 6g). We note that these surpluses do not simply balance the Th deficit in the upper
200 m, as might be expected if remineralization of settling particles released the associated ²³⁴Th.
Instead, the net surplus implies addition of ²³⁴Th to the upper 300 m in excess of local production
from ²³⁸U.

Sediment trap fluxes in 2005 do show a minimum on March 16, with maxima on March 6 523 near the beginning of the trap deployment and on March 31 (Table 2; Fig. 12). If the water 524 column deficit is produced locally by ²³⁴Th fluxes as recorded in the trap, the best-fit pattern of 525 the deficits consistent with the trap record is shown in Fig. 11. As with the 2003 data, few of the 526 observed water column deficits lie on the trend defined by the trap flux record (Fig. 11) and, 527 unlike 2003, no scaling of trap fluxes produces a better fit. In particular, the substantial ²³⁴Th 528 fluxes recorded in the traps throughout March $(875 - 2500 \text{ dpm m}^{-2} \text{ d}^{-1})$ should leave a "residual" 529 ²³⁴Th deficit in the water column at the end of April (approximately one ²³⁴Th half-life later). 530 Instead, the water column Th deficit is negative at the end of April, indicating supply of ²³⁴Th 531 above local production from ²³⁸U to the area. Steady-state ²³⁴Th fluxes (Eq. 2) calculated from 532 the water column deficits do overlap the trap fluxes on March 9 and 13/14 but are divergent on 533 other dates (Fig. 12). 534

The sinking flux of POC is often estimated from the ²³⁴Th deficit in the upper water column by multiplying the steady-state ²³⁴Th flux obtained from the deficit by the POC/²³⁴Th ratio of large filterable particles (e.g. Buesseler et al., 1998, 2006; Moran et al., 2003; see also Cochran and Masqué, 2003). Stewart et al. (2007) have shown that when this approach is taken s39 with the 2003 DYFAMED water column data, the POC fluxes calculated from water column

⁵⁴⁰ ²³⁴Th deficits are generally greater than those measured in the IRS time-series sediment traps.

541 *4.4. Effects of trapping efficiency on* ²³⁴*Th fluxes recorded by traps*

Sediment trap design (surface area, aspect ratio) and hydrodynamic effects (current flow 542 regime in which traps are emplaced) can affect the efficiency with which traps collect settling 543 particles (Gardner, 1980; Baker et al., 1988; Gust et al., 1996; Gust and Kozerski, 2000; see also 544 the extensive review by Buesseler et al., 2007) and produce biases (positive or negative) in trap 545 ²³⁴Th fluxes relative to those calculated from water column deficits (Buesseler, 1991). Our data 546 were collected using several trap designs. At the coastal site, three different traps were used, 547 with different surface areas and aspect ratios, yet Table 2 shows that there is no systematic 548 difference among the traps. Traps 3 and 4 differ in surface area by a factor of ~ 2 , and trap 5 has 549 a collection area 8x and 20x those of traps 3 and 4, respectively. Yet the trap ²³⁴Th fluxes 550 commonly agree to within 25 - 30%. 551

One factor that may affect trapping efficiency is the current regime to which the traps are 552 exposed. Current meter records obtained from the coastal site moorings with traps 3 and 5 553 showed current velocities ranging from 5 to 20 cm s⁻¹ and had comparable temporal patterns at 554 the two sites. Current direction was mostly from the southwest, with highest velocities during 555 the interval March 22 - 28, 1999. Weaker flows from the northeast occurred in the intervals 556 March 14-16 and March 30 - April 2, 1999. There is a suggestion in the data (e.g., greater 557 standard deviation of the mean flux on March 25) that agreement among the traps was poorer 558 than average in the interval with strong currents from the southwest (March 22 - 28), but it is 559 difficult to determine if this was systematic. With respect to comparison of ²³⁴Th deficits 560 561 obtained from trap fluxes and water column Th profiles, there is no sense of a systematic bias

(Fig. 7), although as noted above the different depths of water column sampling (0 - 90 m) and
trap deployment (170 m) make it difficult to rigorously compare the two estimates of flux..

At the DYFAMED site, current velocities for the shallow trap (~200 m) ranged from 2 -564 29 cm s⁻¹ (mean 4.6 cm s⁻¹) in March-May and 1 - 13 cm s⁻¹ (mean 4.5 cm s⁻¹) in May-July, 565 2003. In February-April. 2005, velocities ranged from 0.5 - 27 cm s⁻¹ (mean 12 cm s⁻¹). The IRS 566 trap deployed at the DYFAMED site was designed to prevent collection of swimmers (Peterson 567 et al., 1993). At the same time as the MedFlux trap deployment, a Technicap PPS-5 was 568 deployed as part of the long-term DYFAMED time-series program. This trap showed lower 569 fluxes, but the same temporal pattern, as recorded in the MedFlux IRS trap. The difference in 570 fluxes recorded in the two traps suggests that significant spatial differences in flux exist, even on 571 a scale of a few km, or that trapping efficiencies are different for the two trap types. 572

Buesseler et al. (2007) have summarized several studies that compared long term trap 573 records with fluxes determined from water column ²³⁴Th deficits and concluded that there is an 574 undertrapping bias of approximately a factor of 2 on average. At the deep-water JGOFS time 575 series sites HOTS and BATS, fluxes calculated from water column²³⁴Th profiles have been 576 compared with short-term floating trap deployments (Benitez-Nelson et al. 2001, Buesseler et al. 577 2000,) and the trap fluxes were found to be lower on average than those estimated from a steady-578 state model applied to the deficits. Because the trap fluxes at each site were not continuously 579 recorded, however, part of the disagreement may have been due to the possibility that high flux 580 events were not sampled by the traps (Benitez-Nelson et al. 2001). Moreover, Buesseler et al. 581 (2000) noted that trap fluxes seemed to be lower than those predicted from the water column 582 ²³⁴Th deficits during times of high flux and greater than predicted during periods of low flux. 583 584 Gustafsson et al. (2004) extended this idea by proposing that seasonal changes in trapping

efficiency are related to the settling velocities of the particles, such that fluxes predicted from
 water column ²³⁴Th deficits agree better with traps when the flux is dominated by rapidly settling
 material (e.g. diatoms).

We are able to test some of these ideas with the MedFlux data from the DYFAMED site. 588 Scaling the trap fluxes by a factor of 2 for the 2003 data does result in a significantly better 589 agreement between trap and water column-derived estimates of ²³⁴Th deficits (Fig. 9). This may 590 be interpreted as corresponding to a trapping efficiency of 50%. However, such scaling helps to 591 fit the high ²³⁴Th deficits in early May, but fails to explain the continued high water column 592 deficit at the end of June (Fig. 9), a time at which the Mediterranean has become more 593 oligotrophic and fluxes are low. For the 2005 data, no scaling of trap fluxes produces a 594 significantly better fit of trap-derived ²³⁴Th deficits to the water column data (Fig. 11). 595

Simultaneously with the time-series traps and at the same depths, IRS traps were 596 deployed and operated in a mode that sorted particles according to settling velocity (SV; 597 Peterson et al. 2005, this volume; Armstrong et al., this volume; Xue and Armstrong, this 598 volume; Lee et al., this volume). The ²³⁴Th data from the SV traps are discussed in detail by 599 Szlosek et al. (this volume). The SV traps show that most of the ²³⁴Th (and mass) flux is 600 contributed by particles settling at rates >200 m d⁻¹, comprised of zooplankton fecal pellets and 601 enriched in the ballast minerals calcium carbonate and biogenic silica. As summertime 602 oligotrophic conditions developed in 2003, increases were evident in the proportion of slowly 603 settling material comprising bacterially degraded phytoplankton cells, and the rapidly settling 604 material was dominated by calcium carbonate (Lee et al., this volume; Wakeham et al., this 605 volume). This period of low trap flux shows the greatest discrepancy with the water column 606 ²³⁴Th deficit (Fig. 9), in contrast with the observations of Buesseler et al. (2000). Although one 607

608 could argue that a greater fraction of the settling material later in the season was slowly settling, bacterially-degraded phytoplankton cells and that this material was undercollected by the traps, 609 the oligotrophic nature of the northwest Mediterranean in the summer suggests that the settling 610 particles fluxes are indeed low at that time and that the water column ²³⁴Th deficit measured in 611 2003 does not accurately reflect local Th scavenging and flux. Moreover the long-term sediment 612 trap record (regardless of trap type) at the DYFAMED site is consistent with the seasonal nature 613 of production and flux in the northwest Mediterranean (Miguel et al., 1994; Miguel and LaRosa, 614 1999). We emphasize that the pattern of water column ²³⁴Th deficits poorly matches the non-615 steady state pattern predicted from the trap record in both 2003 and 2005 (Figs. 9 and 11) and 616 next consider constraints on the interpretation of water column ²³⁴Th profiles as an indicator of 617 the local settling flux of ²³⁴Th. 618

619 4.5. Advective effects on water column 234 Th profiles

Advection, both lateral and vertical, can influence particulate fluxes and water column 620 profiles of ²³⁴Th (as well as those of many other reactive chemical species in the oceans). 621 Sediment traps, by definition, catch the sinking particulate flux of ²³⁴Th. In contrast, water 622 column ²³⁴Th deficits provide an indirect measure of the ²³⁴Th flux on settling particles. 623 Significantly, the ²³⁴Th deficit is dominated by the "dissolved" ²³⁴Th fraction because, despite 624 high particle reactivity, more ²³⁴Th is in solution than on particles at particle concentrations 625 typical of the open ocean (e.g., Table 1). This distinction provides a means for decoupling the 626 flux of ²³⁴Th measured in a trap and estimated from a water column ²³⁴Th profile. The fact that 627 mass and ²³⁴Th fluxes collected in the settling velocity traps were dominated by particles settling 628 at rates $>200 \text{ m d}^{-1}$ (Armstrong et al., this volume,; Szlosek et al. this volume) implies that 629 particles (or mass and associated ²³⁴Th) are transferred from the surface to the shallow traps 630

631	considered here $(117 - 313 \text{ m})$ on time scales of the order of 1 day. Current speeds as high as 15
632	and ~ 30 cm s ⁻¹ were observed on our MedFlux moorings at the DYFAMED site in 2003 and
633	2005, respectively (M. Peterson, Univ. of Washington). For current velocities of 5 - 20 cm s ⁻¹ ,
634	settling particles might be transported distances of 4 - 17 km before they are caught in a trap
635	deployed at ~200 m. This is the effective size of the "statistical funnel" or area over which a trap
636	can integrate the particle flux (Siegel et al., 1990; Siegel and Deuser, 1997). In contrast,
637	dissolved ²³⁴ Th is advected over distances determined by its radioactive mean-life (1/ λ_{Th} or 34.8
638	d) and can be produced by decay of ²³⁸ U, scavenged, or recycled en route. Over one mean-life,
639	dissolved ²³⁴ Th can be transported ~170 - 650 km at flow velocities of 5 - 20 cm s ⁻¹ . In effect,
640	the water column ²³⁴ Th deficit is integrating water column processes (i. e., scavenging) over
641	distance scales ~40x those of a sediment trap. As noted above there is evidence from
642	hydrographic data at both coastal and DYFAMED sites and satellite data at DYFAMED of short
643	term variations in water mass structure. Such variations would likely have a greater impact on
644	dissolved ²³⁴ Th and the water column ²³⁴ Th deficit than on particle fluxes.
645	Indeed, the ²³⁴ Th deficits in the spring, 1999 (0-90 m) at our coastal site are
646	approximately three times greater than those observed in the upper 100 m at the DYFAMED site
647	in early March 2003 (Table 3). If the patterns seen in the two years are comparable and a water
648	mass with a deficit typical of the coastal site was advected to the DYFAMED site at speeds of 5
649	cm s ⁻¹ with no additional scavenging, it would be reduced to 30% of its initial value via ingrowth
650	over a time scale of ~40 d and a distance of ~150 km. The DYFAMED site is only ~50 km from
651	shore, and such a calculation demonstrates that advective transport can account for the deficit
652	observed at the DYFAMED site. However, it does not take into account the actual flow path of

the water or the fact that the site is generally considered to be isolated from advective input of
 coastal waters by the westward flowing Northern Current (Bethoux et al. 1998; Millot, 1999),

Stewart et al. (2007) documented that the DYFAMED site showed several types of 655 advective influences during early 2003. For example, T-S diagrams show that the Mediterranean 656 surface water (Modified Atlantic Water, MAW) is underlain by another water mass, Winter 657 Intermediate Water (WIW) at ~60 m in March-April, 2003. WIW can form in the shelf area of 658 the northwestern Mediterranean (Fieux, 1974) and may have lower ²³⁴Th activities, much as was 659 observed at our coastal site, as a consequence of the greater scavenging there. Advective effects 660 in surface waters may be important as well. For example, as noted above, satellite observations 661 document significant short-term (i. e., over a few days) changes in near-surface properties in 662 early May, 2003 (Stewart et al., 2007). For example, a patch of high Chl a was observed on May 663 7, but not on subsequent days. This was accompanied by high temperatures and a greater 234 Th 664 deficit than observed just a few days later on May 10/11 and 13. 665

In 2005, the variation in ²³⁴Th deficit observed between March 9 and 14, 2005, in 666 particular the decrease in deficit from values of $7.5 - 14.1 \times 10^4$ dpm m⁻² on March 9-11 to lower 667 values (2.2 - 4.6 x 10⁴ dpm m⁻²) on March 13-14, coincides with increases in salinity and 668 fluorescence in the upper 200 m over the same time (Fig. 4). Indeed, low deficits seem to follow 669 strong wind events. Sustained winds of 20-36 knots occurred from February 27 to March 1, 670 preceding the first water column ²³⁴Th profile (March 2). A similar interval of strong winds (20-671 38 knots sustained) occurred from March 12 to 13. Both wind events were followed by 672 decreases in ²³⁴Th deficits in the upper 300 m (Table 3). Decreases in ²³⁴Th deficits 673 accompanying wind events may arise from a deepening of the mixed layer, such that deeper 674 water with ²³⁴Th closer to equilibrium with ²³⁸U is entrained. This phenomenon was noticed by 675

Buesseler et al. (1992) following a storm event in the North Atlantic. Such wind events also may affect particulate ²³⁴Th fluxes (via the "mixed-layer pump" concept of Gardner et al., 1995); for example the high trap ²³⁴Th flux in the sample with a collection midpoint of March 15, 2005 effectively followed the March 12-13 wind event (Table 2, Fig. 14).

Schmidt et al. (2002) also noted significant variability in ²³⁴Th deficits at the DYFAMED 680 site in May, 1995, although their sampling was confined to the upper 80 m of the water column. 681 They argued that this period represented the transition from a mesotrophic to an oligotrophic 682 system following the spring bloom (Vidussi et al., 2000). Thus advective influences may have 683 significant effects on water column ²³⁴Th profiles in the northwestern Mediterranean, especially 684 during the transition from high to low fluxes following the bloom. In such situations, high 685 resolution sampling of water column ²³⁴Th profiles is likely to produce considerable variability 686 in ²³⁴Th deficits and sediment traps may provide more accurate measures of local settling ²³⁴Th 687 flux. 688

An additional contribution to non-steady-state fluxes of ²³⁴Th in the northwestern 689 Mediterranean may arise from the periodic inputs of dust from the Sahara Desert. Dust events 690 were observed during the trap deployments in both 2003 (April 29 and May 7) and 2005 (March 691 11 and 26); they were more intense in 2005 than in 2003 (Lee et al., this volume). These events 692 were followed by enhanced mass (Lee et al., this volume) and ²³⁴Th fluxes (Table 2). Lee et al. 693 (this volume) concluded that dust served as a catalyst for particle aggregation and sinking. In 694 such cases, water column²³⁴Th deficits also should increase following a dust event, as particulate 695 ²³⁴Th is removed from the water column. We do not have sufficient temporal resolution in the 696 water column ²³⁴Th data to test this possibility, but it may explain the high deficit observed on 697 March 11, 2005. 698

699

700 **5. Summary and Conclusions**

We have compared trap ²³⁴Th fluxes and water column ²³⁴Th profiles in the northwestern 701 Mediterranean in an attempt to reconcile these two indicators of the flux of ²³⁴Th. Detailed 702 sediment trap time-series 234 Th fluxes at shallow depths (<300 m), above which 234 Th deficits 703 were sampled in the water column, provided the opportunity to place water column²³⁴Th profiles 704 taken weeks apart into a context provided by detailed time-series records of local ²³⁴Th fluxes. 705 Comparison of the pattern of trap and water column²³⁴Th fluxes at a coastal site shows 706 reasonable agreement over the \sim 1 month of sampling during the spring bloom in 1999; in 707 contrast, a lack of agreement between the two indicators of flux is evident at the deep-water 708 DYFAMED site over several months of sampling in 2003 and 2005. Rapid changes in water 709 column²³⁴Th profiles over a few days in the spring of both 2003 and 2005 suggest that lateral 710 and vertical advective effects can introduce high-frequency variability into profiles and the 711 resultant estimated deficits of ²³⁴Th. Advection can lead to decoupling of water column and trap 712 measures of ²³⁴Th flux because the water column deficit is dominated by the "dissolved" ²³⁴Th 713 reservoir, while traps collect the settling flux of particulate ²³⁴Th. Most of the particulate ²³⁴Th 714 (and mass) flux at the DYFAMED site is carried by particles settling faster that 200 m d⁻¹ (Lee et 715 al., this volume; Armstrong et al., this volume; Xue and Armstrong, this volume; Szlosek et al., 716 this volume); thus, for a given advective flow field (currents of $\sim 5 - 20$ cm s⁻¹), sediment traps 717 are integrating settling fluxes of particulate 234 Th over length scales that are ~40 times less than 718 the spatial scale over which water column deficits may be integrated. Wind-induced mixing of 719 the upper water column also can cause short-term variation in the ²³⁴Th deficit. 720

Dust events also may contribute to non-steady state variation in ²³⁴Th fluxes. If such 721 events catalyze the aggregation and sinking of particles, both water column deficits and trap 722 fluxes may increase together. Even in such cases, however, unless the dust scavenges significant 723 additional dissolved ²³⁴Th from the water column, the effect is likely to be greater on particulate 724 ²³⁴Th fluxes measured by traps than on those estimated from water column deficits. Our results 725 suggest that sediment trap and water column estimates of ²³⁴Th flux provide complementary 726 views of the removal of ²³⁴Th from the water column. The two approaches are especially useful 727 in understanding non-steady-state variation in ²³⁴Th fluxes in regions such as the northwestern 728 Mediterranean Sea that experience an annual transition from mesotrophic to oligotrophic 729 conditions. In such areas, ²³⁴Th fluxes derived from water column profiles may not be reliable 730 indicators of the local flux of ²³⁴Th. 731

732 Acknowledgements

Sampling at the coastal site in 1999 was supported by the International Atomic Energy 733 Agency (IAEA) and its Marine Environment Laboratories (MEL). Financial support from the US 734 Dept. of Energy, IAEA and Stony Brook University to JKC during a sabbatical leave is 735 gratefully acknowledged. Research at the DYFAMED site during the MedFlux program in 2003 736 and 2005 was supported by the US National Science Foundation and the IAEA. The IAEA is 737 grateful for the support provided to its Marine Environment Laboratories by the Government of 738 the Principality of Monaco. We thank the captains and crews of the RVs Seward Johnson, 739 740 *Endeavor* and *Tethys* for their assistance. We are also grateful for the assistance provided by our MedFlux colleagues M. Peterson, Z. Liu, L. Abramson, and T. Toubal, and for discussions with 741 C. Lee and S. Wakeham. Wind data at the DYFAMED site in 2005 were from the Meteo-France 742 743 buoy and were provided courtesy of L. Coppola (Observatoire Oceanologique, Villefranche-sur-

744	Mer). Helpful comments were provided by S. B. Moran, K. Buesseler and two anonymous							
745	reviewers. This is MedFlux Contribution No. 18 and MSRC Contribution No. 1357.							
746	References							
747	Amiel, D., J. K. Cochran, J. K., Hirschberg, D. J. 2002. Th-234/U-238 disequilibrium as an							
748	indicator of the seasonal export flux of particulate organic carbon in the North Water.							
749	Deep-Sea Research II 49, 5191-5209.							
750	Armstrong, R. A., Lee, C., Peterson, M. L. Cochran, J.K., Wakeham, S.G. Sinking velocity							
751	spectra and the ballast ratio hypothesis. Deep-Sea Research II, this volume.							
752	Baker, E. T., Milburn, H. B., Tennat, D. A., 1988. Field assessment of sediment trap							
753	efficiency under varying flow conditions. Journal of Marine Research 46, 573-592.							
754	Benitez-Nelson, C., Buesseler, K. O., Karl, D. M., Andrews, J. 2001. A time-series study of							
755	particulate matter export in the North Pacific subtropical gyre based on ²³⁴ Th: ²³⁸ U							
756	disequilibrium. Deep-Sea Research I 48, 2595-2611.							
757	Bethoux, J. P., Gentili, B., Tailliez, D., 1998. Warming and freshwater budget changes							
758	in the Mediterranean since the 1940s, their possible relation to the greenhouse effect.							
759	Geophysical Research Letters 25, 1023-1026.							
760	Buesseler, K. O., 1991. Do upper ocean sediment traps provide an accurate record of particle							
761	flux? Nature 353, 420-423.							
762	Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D., Gustafsson, O.,							
763	Harada, K., Michaels, A. F., Rutgers van der Loeff, M., Sarin, M., Steinberg, D. K.,							
764	Trull, T. 2007. An assessment of the use of sediment traps for estimating upper ocean							
765	particle fluxes. Journal of Marine Research 65, 345-416							

766	Buesseler, K. O., Bacon, M. P., Cochran, J. K., Livingston, H. D., 1992. Carbon and nitrogen
767	export during the JGOFS North Atlantic Bloom Experiment estimated from Th-234/U-
768	238 disequilibria. Deep-Sea Research I 39, 1115-1137.
769	Buesseler, K. O., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R., Chai, F., Chao, Y.,
770	1998. Upper ocean export of particulate organic carbon in the Arabian Sea derived from
771	thorium-234. Deep-Sea Research II 45, 2461-2487.
772	Buesseler, K. O., Ball, L., Andrews, J., Cochran, J. K., Hirschberg, D. J., Bacon, M. P., Fleer, A.,
773	Brzezinski, M., 2001. Upper ocean export of particulate organic carbon and biogenic
774	silica in the Southern Ocean along 170 degrees W. Deep-Sea Research II 48, 4275-4297.
775	Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette, M., Cochran, J. K.,
776	Coppola, L., Fisher, N. S., Fowler, S. W., Gardner, W. D., Guo, L. D., Gustafsson, O.,
777	Lamborg, C., Masqué, P., Miquel, J. C., Passow, U., Santschi, P. H., Savoye, N.,
778	Stewart, G., Trull, T., 2006. An assessment of particulate organic carbon to thorium-
779	234 ratios in the ocean and their impact on the application of 234 Th as a POC flux
780	proxy. Marine Chemistry 100, 190-212.
781	Buesseler, K. O., Steinberg, D. K., Michaels, A. F., Johnson, R. J., Andrews, J. E., Valdes, J. R.,
782	Price, J. F. 2000. A comparison of the quantity and quality of material caught in a
783	neutrally buoyant versus surface-tethered sediment trap. Deep-Sea Research I 47, 277-
784	294.
785	Cai, P., Dai, M., Lu, D., Chen, W. (2006) How accurate are ²³⁴ Th measurements in seawater
786	based on MnO ₂ -impregnated cartridge technique? Geochemistry Geophysics
787	Geosystems 7, Q03020, doi:10.1029/2005GC001104.

- Chen, J. H., Edwards, R. L., Wasserburg, G. J., 1986. ²³⁸U, ²³⁴U and ²³²Th in seawater. Earth and
 Planetary Science Letters 80, 241-251.
- Cochran, J. K., Barnes, C., Achman, D., Hirschberg, D. J., 1995. Thorium-234/Uranium-238
- disequilibrium as an indicator of scavenging rates and particulate organic carbon fluxes
 in the Northeast Water Polynya, Greenland. Journal of Geophysical Research 100:
 4399-4410.
- Cochran, J. K., Buesseler, K. O., Bacon, M. P., Wang, H., Hirschberg, D. J., Ball, L. Andrews,
- ⁷⁹⁵ L., Crossin, G., Fleer, A., 2000. Short-lived thorium isotopes (²³⁴Th, ²²⁸Th) as
- indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. DeepSea Research II 47: 3451-3490.
- Cochran, J. K., Masqué, P., 2003. Short-lived U/Th series radionuclides in the ocean: Tracers for
 scavenging rates, export fluxes and particle dynamics, In: Uranium-Series
- Geochemistry (B. Bourdon, G. M. Henderson, C. C. Lundstrom, S. P. Turner, eds)
 Reviews in Mineralogy & Geochemistry 52, pp. 461-492.
- 802 Conan, P., Millot, C., 1995. Variability of the Northern Current off Marseilles, western
- Mediterranean Sea, from February to June 1992. Oceanologica Acta 18, 193–205.
- Edwards, A. W. F., 1992. *Likelihood*. Johns Hopkins University Press, Baltimore, MD, USA.
- Fieux, M., 1994. Formation d'eau dense sur le plateau continental du Golfe du Lion, Colloque
 International du CNRS sur: La Formation des Eaux Oceaniques Profondes., 215, 165189.
- Gardner, W. D., 1980. Sediment trap dynamics and calibration: a laboratory evaluation. Journal
 of Marine Research 38: 17-39.
- Gardner, W. D., Chung, S. P, Richardson, M. J., Walsh, I. D. 1995. The oceanic mixed-layer
- 811 pump. Deep-Sea Research II 42, 757-775.

812	Gust, G., Bowles, W., Giordano, S., Huttel, M., 1996. Particle accumulation in a cylindrical
813	sediment trap under laminar and turbulent steady flow: An experimental approach.
814	Aquatic Sciences 58, 297-326.
815	Gust, G., Kozerski, HP., 2000. In situ sinking particle flux from collection rates of cylindrical
816	traps. Marine Ecology Progress Series 208, 93-106.
817	Gustafsson, O., Andersson, P., Kukulska, Z., Broman, D., Hajdu, S., Ingri, J., 2004. Evaluation
818	of collection efficiency of upper ocean sub-photic layer sediment traps: a 24-month in
819	situ calibration in the open Baltic Sea using ²³⁴ Th. Limnology and Oceanography:
820	Methods 2, 62-74.
821	Hilborn, R., Mangel, M., 1997. The Ecological Detective: Confronting Models with Data.
822	Princeton University Press, Princeton, NJ, USA.
823	Hung, CC., Moran, S. B., Cochran, J. K., Guo, L., Santschi, P. H. 2008. Comment on "How
824	accurate are ²³⁴ Th measurements in seawater based on the MnO ₂ -impregnated cartridge
825	technique?" by Pinghe Cai et al., Geochemistry Geophysics Geosystems, 9, Q02009,
826	doi:10.1029/2007GC001770.
827	Hurtt, G. C., Armstrong, R. A., 1994. A pelagic ecosystem model calibrated with BATS data.
828	Deep-Sea Res. II 43:653-683.

829	Ku, TL., Musakabe, M., 1990. Testing Biological Control of Elemental Removal in Surface
830	Ocean with ⁷ Be/ ¹⁰ Be and U/Th Series Isotopes. In: Isotopic Tracers in U. S. JGOFS (M.
831	P. Bacon, R.F. Anderson, eds), U.S. JGOFS Planning and Coordination Office, Woods
832	Hole, MA, pp. 101-105.
833	Lee, C., Peterson, M. L., Wakeham, S. G., Armstrong, R. A., Cochran, J. K., Miquel, J. C.,
834	Fowler, S. W., Hirschberg, D., Beck, A., Xue, J., 2008. Particulate organic matter and
835	ballast fluxes measured using Time-Series and Settling Velocity sediment traps in the
836	northwestern Mediterranean Sea. Deep-Sea Research II, this volume
837	Livingston, H. D., Cochran, J. K., 1987. Determination of transuranic and thorium isotopes in
838	ocean water - in solution and in filterable particles. Journal of Radioanalytical and
839	Nuclear Chemistry 115: 299-308.
840	Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., 1953. Equation
841	of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-
842	1092.
843	Millot, C., 1999. Circulation in the Western Mediterranean Sea Journal of Marine
844	Systems 20, 432-442.
845	Miquel J. C., Fowler, S. W., La Rosa , J., Buat-Menard, P., 1994. Dynamics of the downward
846	flux of particles and carbon in the open NW Mediterranean Sea. Deep-Sea Research 41,
847	242-261.
848	Miquel, J. C., La Rosa, J., 1999. Suivi à long term des flux particulaires au site DYFAMED
849	(mer Ligure, Méditerranée occidentale). Océanis 25, 303-318.
850	Moran, S. B., Weinstein, S. E., Edmonds, H. N., Smith, J. N., Kelly, R. P., Pilson, M. E. Q.,
851	Harrison, W. G., 2003. Does ²³⁴ Th/ ²³⁸ U disequilibrium provide an accurate record of

- the export flux of particulate organic carbon from the upper ocean? Limnology and
 Oceanography 48, 1018-1029.
 Pates, J. M., Muir, G. K. P., 2007. Uranium-salinity relationships in the Mediterranean:
- implications for ²³⁴Th:²³⁸U particle flux studies. Marine Chemistry, 106, 530-545..
- Peterson, M. L., Thoreson, D. S., Hedges, J. I., Lee, C., Wakeham, S. G., 1993. Field evaluation
 of a valved sediment trap. Limnology and Oceanography 38, 1741-1761.
- Peterson, M. L., Wakeham, S. G., Lee, C., Askea, M., Miquel, J. C., 2005. Novel techniques for
 collection of sinking particles in the ocean and determining their settling rates.
- Limnology and Oceanography Methods 3, 520-532.
- Peterson, M. L., Fabres, J., Wakeham, S. G., Lee, C., Miquel, J. C., 2008. Sampling the vertical
 particle flux in the upper water column using a large diameter free-drifting NetTrap
 adapted to an Indented Rotating Sphere sediment trap. Deep-Sea Research II, this
 volume.
- Rutgers van der Loeff, M., Moore, W. S., 1999. Determination of natural radioactive tracers. In:
 Methods of Seawater Analysis, 3d ed. (K. Grasshof, M. Ehrhardt, K. Kremling, eds.)
 Verlag Chemie, Weinheim, pp. 365-397.
- Rutgers van der Loeff, M., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O.,

869 Charette, M., Dai, M., Gustafsson, O., Masqué, P., Morris, P. J., Orlandini, K.,

- 870 Rodriguez y Baena, A., Savoye, N., Schmidt, S., Turnewitsch, R., Voge, I., Waples, J.
- T., 2006. A review of present techniques and methodological advances in analyzing
- ²³⁴Th in aquatic systems. Marine Chemistry 100, 190-212.

873	Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
874	Jackson, G. A., Roy-Barman, M., Schmidt, S., Elskens, M., 2006. ²³⁴ Th sorption and
875	export models in the water column: A review. Marine Chemistry 100, 234-249.
876	Schmidt, S., Andersen, V., Belviso, S., Marty, JC., 2002. Strong seasonality in particle
877	dynamics of north-western Mediterranean surface waters as revealed by ²³⁴ Th/ ²³⁸ U.
878	Deep-Sea Research I 49, 1507-1518.
879	Siegel, D. A., Deuser, W. G., 1997. Trajectories of sinking particles in the Sargasso Sea:
880	Modeling of statistical funnels above deep-ocean sediment traps. Deep-Sea Research 44:
881	1519-1541.
882	Siegel, D. A., Granata, T. C., Michaels, A. F., Dickey, T. D., 1990. Mesoscale eddy diffusion,
883	particle sinking, and the interpretation of sediment trap data. Journal of Geophysical
884	Research 95: 5305-5311.
885	Speicher, E. A., Moran, S. B., Burd, A. B., Delfanti, R., Kaberi, H., Kelly, R. P., Papucci, C.,
886	Smith, J. N., Stavrakakis, S., Torricelli, L., Zervakis, V., 2006. Particulate organic carbon
887	export fluxes and size-fractionated POC/ ²³⁴ Th ratios in the Ligurian, Tyrrhenian and
888	Aegean Seas. Deep-Sea Research I 53, 1810-1830.
889	Stewart, G., Cochran, J. K., Miquel, J. C., Masqué, P., Szlosek, J., Rodriguez y Baena, A. M.,
890	Fowler, S. W., Gasser, B., Hirschberg, D. J., 2007. Comparing POC export from
891	234 Th/ 238 U and 210 Po/ 210 Pb disequilibria with estimates from sediment traps in the
892	northwest Mediterranean. Deep-Sea Research I, 54, 1549-1570.
893	Szlosek, J., Cochran, J. K., Miquel, J. C., Masqué, P., Armstrong, R. A., Fowler, S. A., Gasser,
894	B., Hirschberg, D. J., 2008. Particulate organic carbon- ²³⁴ Th relationships in particles

separated by settling velocity in the Northwest Mediterranean. Deep-Sea Research II, thisvolume.

897	Vidussi, F., Marty, JC., Chiaverini, J., 2000. Phytoplankton pigment variations during te
898	transition from spring bloom to oliogotrophy in the northwestern Mediterranean Sea.
899	Deep-Sea Research I 47, 423-445.
900	Wakeham, S. G., Lee, C., Peterson, M. L., Liu, Z., Szlosek, J., Putnam, I. F., Xue, J. 2008.
901	Organic biomarkers in the twilight zone- Time series and settling velocity sediment traps
902	during MedFlux. Deep-Sea Research II, accepted.
903	Wyse, E., Lee, SH., Rodriguez y Baena, A., Azemard, S., Miquel, JC., Gastaud, J., Pham, M.
904	K., Povinec, P. P., DeMora, S., 2006. Measurement of Radioisotopes in Marine Samples
905	by Sector Field ICP-MS. In: Isotopes in Environmental Studies, IAEA-CSP-26, IAEA,
906	Vienna, pp. 499-500.
907	Xue, J., Armstrong, R. A., 2008. A new method for estimating settling velocities of sinking

908 particles in the open ocean. Deep-Sea Research II, this volume.

Sampling	Day of Year	Depth	Particulate	Dissolved	Total
Date		(m)	²³⁴ Th (> 1 μm)	²³⁴ Th	²³⁴ Th
(mm/dd/yyyy)			(dpm/L)	(dpm/L)	(dpm/L)
Coastal site (1999)					
03/10-12/1999	69-71	2	0.455 ± 0.024	1.49 ± 0.07	1.95 ± 0.07
		25	0.387 ± 0.017	1.88 ± 0.20	2.27 ± 0.20
		40	0.346 ± 0.018	1.30 ± 0.07	1.64 ± 0.07
		65	0.366 ± 0.016	1.57 ± 0.29	1.94 ± 0.29
		90	0.321 ± 0.015	1.78 ± 0.24	2.10 ± 0.24
03/16-19/1999	75-78	2	0.376 ± 0.024	1.77 ± 0.09	2.15 ± 0.09
		25	-	-	1.38 ± 0.03
		40	-	-	1.18 ± 0.08
		65	0.367 ± 0.012	0.98 ± 0.07	1.35 ± 0.07
		90	0.285 ± 0.009	1.45 ± 0.21	1.74 ± 0.21
03/24/1999	83	5	0.107 ± 0.015	1.46 ± 0.47	1.57 ± 0.47
		25	0.213 ± 0.025	1.43 ± 0.11	1.64 ± 0.11
		40	0.091 ± 0.007	1.76 ± 0.21	1.85 ± 0.21
		65	0.208 ± 0.011	1.57 ± 0.11	1.78 ± 0.11
		90	0.307 ± 0.029	1.79 ± 0.11	2.10 ± 0.11
03/31/1999	88	5	0.065 ± 0.010	1.10 ± 0.19	1.16 ± 0.19
		25	0.079 ± 0.012	1.15 ± 0.10	1.23 ± 0.10
		40	0.120 ± 0.007	1.43 ± 0.10	1.55 ± 0.10
		65	0.259 ± 0.032	1.37 ± 0.25	1.63 ± 0.25
		90	0.171 ± 0.010	1.42 ± 0.09	1.60 ± 0.09
04/07/1999	95	120	0.054 ± 0.004	1.72 ± 0.14	1.78 ± 0.14
		150	0.234 ± 0.011	1.65 ± 0.04	1.88 ± 0.05
		200	0.267 ± 0.012	1.69 ± 0.14	1.95 ± 0.14
DYFAMED Site (2	2003)				
03/04/2003	63	2	0.221 ± 0.004	2.13 ± 0.14	2.35 ± 0.14
		20	0.179 ± 0.002	2.09 ± 0.16	2.28 ± 0.16
		50	0.259 ± 0.004	2.28 ± 0.14	2.55 ± 0.14
		75	0.212 ± 0.003	2.36 ± 0.21	2.58 ± 0.21
		100	0.238 ± 0.004	2.44 ± 0.17	2.68 ± 0.17
		150	0.147 ± 0.004	2.46 ± 0.18	2.61 ± 0.18
		200	0.150 ± 0.002	2.63 ± 0.16	2.78 ± 0.16

Sampling Date (mm/dd/yyyy)	Day of Year	Depth (m)	Particulate ²³⁴ Th (> 1 μm) (dpm/L)	Dissolved ²³⁴ Th (dpm/L)	Total ²³⁴ Th (dpm/L)
05/07/2003	127	2	0.244 ± 0.007	2.61 ± 0.25	2.85 ± 0.25
		20	0.138 ± 0.004	2.35 ± 0.16	2.49 ± 0.16
		40	0.281 ± 0.008	1.88 ± 0.15	2.16 ± 0.15
		60	0.153 ± 0.002	2.33 ± 0.18	2.49 ± 0.18
		100	0.104 ± 0.140	2.19 ± 0.16	2.29 ± 0.21
		150	0.223 ± 0.039	2.21 ± 0.12	2.44 ± 0.12
		200	0.235 ± 0.056	2.25 ± 0.14	2.48 ± 0.15
05/11/2003	131	20	0.160 ± 0.008	2.05 ± 0.18	2.21 ± 0.18
		45	0.388 ± 0.009	2.09 ± 0.21	2.48 ± 0.21
		75	0.182 ± 0.002	2.44 ± 0.19	2.63 ± 0190
		100	0.231 ± 0.006	2.10 ± 0.16	2.33 ± 0.16
		150	0.242 ± 0.005	2.45 ± 0.14	2.70 ± 0.14
		200	0.188 ± 0.005	2.45 ± 0.14	2.64 ± 0.14
05/13/2003	133	2	0.175 ± 0.004	3.22 ± 0.25	339 ± 025
00/10/2000	100	20	0.175 ± 0.005	1.72 ± 0.45	1.85 ± 0.45
		<u>50</u>	0.191 ± 0.003	2.38 ± 0.26	2.57 ± 0.26
		60	0.157 ± 0.004	2.61 ± 0.24	2.77 ± 0.24
		100	0.084 ± 0.003	2.30 ± 0.12	2.38 ± 0.12
		150	0.095 ± 0.003	1.72 ± 0.12	1.82 ± 0.12
		200	0.201 ± 0.005	3.70 ± 0.20	3.90 ± 0.20
06/30/2003	181	20	0.309 ± 0.008	1.79 ± 0.12	210 ± 0.12
00/30/2003	101	20 50	0.509 ± 0.008 0.676 ± 0.014	1.79 ± 0.12 1.19 ± 0.10	2.10 ± 0.12 1.86 ± 0.10
		75	0.070 ± 0.014 0.169 ± 0.004	238 ± 0.10	1.00 ± 0.10 2 55 + 0 20
		100	0.107 ± 0.004 0.147 ± 0.009	2.50 ± 0.20 2 67 + 0.09	2.55 ± 0.20 2 82 + 0.09
		150	0.200 ± 0.012	2.37 ± 0.09 2.32 ± 0.09	2.52 ± 0.09 2.52 ± 0.09
		200	0.236 ± 0.012	2.52 = 0.09 2.46 ± 0.09	2.52 ± 0.09 2.70 ± 0.09
		200	000 = 0.010		

Sampling Date	SamplingDay of YearDepthParticulateDate(m) 234 Th (> 1 μ m)		Dissolved ²³⁴ Th	Total ²³⁴ Th	
(mm/dd/yyyy)			(dpm/L)	(dpm/L)	(dpm/L)
DYFAMED Site (2	2005)				
03/02/2005	61	5	-	-	2.69 ± 0.16
(Niskin)		30	-	-	2.34 ± 0.15
		70	-	-	2.33 ± 0.15
		110	-	-	2.38 ± 0.16
		150	-	-	2.80 ± 0.19
		200	-	-	2.59 ± 0.14
		300	-	-	3.09 ± 0.31
		400	-	-	2.75 ± 0.19
		450	-	-	2.62 ± 0.17
		500	-	-	2.36 ± 0.15
		700	-	-	2.64 ± 0.16
		1000	-	-	2.59 ± 0.17
03/08-09/2005	67-68	5	-	-	2.34 ± 0.13
(Niskin)		25	-	-	2.28 ± 0.13
· · · ·		60	-	-	2.15 ± 0.12
		100	-	-	2.25 ± 0.12
		100	-	-	2.34 ± 0.14
		125	-	-	2.33 ± 0.15
		150	-	-	2.16 ± 0.12
		200	-	-	2.51 ± 0.14
		200	-	-	2.64 ± 0.14
		250	-	-	2.50 ± 0.12
		300	-	-	2.83 ± 0.14
		350	-	-	2.65 ± 0.16
		500	-	-	2.59 ± 0.14
		750	-	-	2.79 ± 0.16
		900	-	-	2.62 ± 0.15
		1050	-	-	2.74 ± 0.16
		1500	-	-	2.87 ± 0.16
		2000	-	-	2.88 ± 0.18
		2000	-	-	2.89 ± 0.17
		2000	-	-	2.77 ± 0.15
		2000	-	-	2.66 ± 0.16
		2000	-	-	2.58 ± 0.14

Sampling Date	Day of Year Depth Particulate (m) 234 Th (> 1 μ m) (dnm/I)		Dissolved ²³⁴ Th (dpm/L)	Total ²³⁴ Th (dpm/L)	
(mm/dd/yyyy)			(upin/L)	(upin/L)	(upin/L)
03/09/2005	68	25	0.382 ± 0.015	1.74 ± 0.05	2.12 ± 0.05
(Pump)		60	0.419 ± 0.018	1.76 ± 0.05	2.18 ± 0.05
		100	0.379 ± 0.017	2.28 ± 0.12	$2.66. \pm 0.12$
		150	0.398 ± 0.017	1.81 ± 0.06	2.21 ± 0.06
		300	0.203 ± 0.001	2.77 ± 0.11	2.97 ± 0.11
		400	0.157 ± 0.003	2.63 ± 0.10	2.79 ± 0.10
		600	0.150 ± 0.034	2.37 ± 0.11	2.52 ± 0.11
		1500	0.120 ± 0.020	2.67 ± 0.12	2.79 ± 0.12
		1800	0.118 ± 0.022	2.52 ± 0.12	2.64 ± 0.12
02/11/0005	70	_			0.05 + 0.15
03/11/2005	/0	5	-	-	2.05 ± 0.15
(Niskin)		25	-	-	1.87 ± 0.13
		50	-	-	$1./3 \pm 0.12$
		/5	-	-	1.79 ± 0.13
		100	-	-	1.55 ± 0.12
		125	-	-	1.86 ± 0.14
		150	-	-	2.41 ± 0.17
		200	-	-	$2.3 / \pm 0.1 /$
		275	-	-	2.50 ± 0.18
		350	-	-	2.66 ± 0.17
		500	-	-	2.58 ± 0.18
		1000	-	-	2.69 ± 0.17
03/13/2005	72	5	0.286 ± 0.022	2.13 ± 0.08	2.42 ± 0.08
(Pump)		25	0.504 ± 0.030	1.92 ± 0.05	2.42 ± 0.06
		75	0.229 ± 0.023	2.46 ± 0.07	2.68 ± 0.07
		100	0.244 ± 0.004	2.23 ± 0.07	2.47 ± 0.07
		200	0.178 ± 0.002	2.58 ± 0.10	2.76 ± 0.10
		400	0.175 ± 0.004	2.47 ± 0.14	2.65 ± 0.14
		500	0.212 ± 0.026	2.20 ± 0.08	2.41 ± 0.08
		800	0.167 ± 0.028	2.37 ± 0.07	2.54 ± 0.08
		900	0.127 ± 0.029	2.28 ± 0.06	2.41 ± 0.07

Sampling Date	Day of Year	Depth (m)	Particulate 234 Th (> 1 μ m)	Dissolved ²³⁴ Th	Total ²³⁴ Th
(mm/dd/yyyy)	1		(dpm/L)	(dpm/L)	(dpm/L)
03/14/2005	73	5	-	-	2.29 ± 0.12
(Niskin)		25	-	-	2.49 ± 0.13
		50	-	-	2.60 ± 0.14
		75	-	-	2.40 ± 0.13
		100	-	-	2.18 ± 0.13
		100	-	-	2.44 ± 0.14
		125	-	-	2.31 ± 0.11
		150	-	-	2.59 ± 0.14
		175	-	-	2.55 ± 0.14
		200	-	-	2.61 ± 0.15
		250	-	-	2.78 ± 0.16
		300	-	-	2.72 ± 0.17
		750	-	-	2.67 ± 0.17
		1000	-	-	2.36 ± 0.13
04/29-30/2005	119-120	5	-	-	2.39 ± 0.15
(Niskin)		15	-	-	2.72 ± 0.16
		25	-	-	2.50 ± 0.16
		35	-	-	2.33 ± 0.15
		50	-	-	2.38 ± 0.12
		50	-	-	2.67 ± 0.14
		60	-	-	2.76 ± 0.15
		75	-	-	2.79 ± 0.16
		90	-	-	2.57 ± 0.14
		100	-	-	2.49 ± 0.15
		125	-	-	2.63 ± 0.16
		150	-	-	2.98 ± 0.17
		175	-	-	2.80 ± 0.16
		200	-	-	3.09 ± 0.17
		300	-	-	3.17 ± 0.20
		500	-	-	2.72 ± 0.15
		500	-	-	2.73 ± 0.15
		750	-	-	2.71 ± 0.15

Table 2: Sediment trap ²³⁴Th fluxes

	-				Mean
Midpoint of	Day of Year	²³⁴ Th Flux	²³⁴ Th Flux	²³⁴ Th Flux	²³⁴ Th Flux
Sample Collection	-	$(dpm m^{-2} d^{-1})$	$(dpm m^{-2} d^{-1})$	$(dpm m^{-2} d^{-1})$	$(dpm m^{-2} d^{-1})$
(mm/dd/yyyy)					
Coastal Site (170 m)				
Trap type		PPS-3	PPS-4	PPS-5	
03/11/1999	70	3466	2076	3758	3100 ± 898
03/13/1999	72	1597	1613	1937	1715 ± 192
03/15/1999	74	2969	3052	3022	3014 ± 42
03/17/1999	76	1864	2419	3203	2495 ± 673
03/19/1999	78	3448	2592	4275	3438 ± 841
03/21/1999	80	2081	2468	3571	2707 ± 773
03/23/1999	82	2587	4644	3804	3678 ± 1034
03/25/1999	84	4128	1583	2521	2744 ± 1287
03/27/1999	86	4297	3581	4126	4001 ± 364
03/29/1999	88	4320	3633	3513	3822 ± 435
03/31/1999	90	1005	1690	1738	1478 ± 410
04/02/1999	92	941	333	431	568 ± 326
DYFAMED Site					
(238 m)					
03/08/2003	67	2288 ± 194			
03/13/2003	72	1715 ± 155			
03/18/2003	77	2279 ± 145			
03/23/2003	82	1153 ± 104			
03/28/2003	87	596 ± 66			
04/03/2003	92	301 ± 28			
04/09/2003	98	317 ± 25			
04/15/2003	104	486 ± 25			
04/21/2003	110	516 ± 22			
04/27/2003	116	307 ± 16			
05/03/2003	122	502 ± 17			
DYFAMED Site					
(117 m)	105				
05/16/2003	135	544 ± 29			
05/20/2003	139	417 ± 26			
05/24/2003	143	307 ± 22			
05/28/2003	147	232 ± 18			
06/01/2003	151	-			
06/05/2003	155	59 ± 12			
06/09/2003	159	32 ± 10			
06/13/2003	163	51 ± 10			
06/17/2003	167	-			
06/22/2003	172	17 ± 7			
06/27/2003	177	12 ± 5			

Table 2 (cont.) : Sediment trap ²³⁴Th fluxes

Midpoint of	Day of Year	²³⁴ Th Flux
Sample Collection (mm/dd/yyyy)		$(dpm m^{-2} d^{-1})$
DYFAMED Site (313 m)		
03/06/2005	65	2505 ± 77
03/11/2005	70	2261 ± 64
03/16/2005	75	875 ± 42
03/21/2005	80	1485 ± 47
03/26/2005	85	1320 ± 41
03/31/2005	90	2494 ± 46
04/05/2005	95	900 ± 25
04/10/2005	100	239 ± 13
04/15/2005	105	469 ± 16
04/20/2005	110	294 ± 12
04/25/2005	115	73 ± 6

Table 3: Water column ²³⁴Th deficits (10⁴ dpm m⁻²)

Coastal Site							
Sampling date (mm/dd/yyyy)	03/11/1999	03/18/1999	03/24/1999	03/31/1999			
Day of Year	70	77	83	90			
0-90 m	6.1 ± 1.0	10.5 ± 0.4	7.8 ± 0.8	10.8 ± 0.8			
DYFAMED Site							
Sampling date (mm/dd/yyyy)	03/04/2003	05/07/2003	05/11/2003	05/13/2003	06/30/2003		
Day of Year	63	127	131	133	181		
0-100 m	2.1 ± 0.8	2.8 ± 0.9	2.9 ± 0.9	2.0 ± 1.4	4.6 ± 0.7		
0-200 m	2.5 ± 1.4	5.6 ± 1.3	3.9 ± 1.3	4.2 ± 1.7	5.2 ± 0.9		
Sampling date (mm/dd/yyyy)	03/02/2005	03/08-09/2005	03/09/2005	03/11/05	03/13/2005	03/14/2005	04/29-30/2005
Day of Year	61	67-68	68	70	72	73	119-120
0-300 m	$2.4\pm2.9*$	9.3 ± 1.4	$7.5 \pm 1.2*$	14.1 ± 1.7	$2.2 \pm 1.3*$	$4.6 \pm 1.4*$	$-4.1 \pm 17^*$

*Deficits calculated from Th measured in small volume (Niskin) samples; all others from in situ pumps

Figures

Fig. 1: Map showing location of coastal (open square) and DYFAMED (filled square) sampling sites.

Fig. 2: Hydrographic data for coastal site during times of water column ²³⁴Th sampling. Fig. 3: ²³⁴Th water column profiles at coastal site- 1999. Dashed line is ²³⁸U activity. Open symbols are particulate (>1 μ m) ²³⁴Th; solid symbols are total ²³⁴Th obtained by summing particulate + dissolved (not shown) activities.

Fig. 4: Hydrographic data at DYFAMED site- March, 2005: a) salinity, b) fluorescence. Fig. 5: 234 Th water column profiles at DYFAMED site- 2003. Dashed line is 238 U activity. Open symbols are particulate (>1 µm) 234 Th; solid symbols are total 234 Th obtained by summing particulate + dissolved (not shown) activities.

Fig. 6: ²³⁴Th water column profiles at DYFAMED site- 2005. Dashed line is ²³⁸U activity. Open symbols are particulate (>1 μ m) ²³⁴Th; solid symbols are total ²³⁴Th obtained by summing particulate + dissolved (not shown) activities. When no particulate activity is shown, only total ²³⁴Th was measured.

Fig. 7: Water column ²³⁴Th deficits vs. time at coastal site. Open circles + dashed line represent the deficits predicted from the sediment trap fluxes at 170 m (Eq. 6) with $\alpha = 1$. Individual points (marked with "x") are measured deficits (0-90 m) from ²³⁴Th water column profiles (Fig. 5; Table 3).

Fig. 8: ²³⁴Th flux vs. time at coastal site. Solid lines represent histogram of measured trap flux at 170 m. "x" denotes steady-state ²³⁴Th fluxes calculated from measured ²³⁴Th water column deficits to 90 m (Eq. 2). Dashed lines are non-steady state ²³⁴Th fluxes determined from two successive water column ²³⁴Th profiles (Eq. 7)

Fig. 9: Water column ²³⁴Th deficit vs. time at DYFAMED site- 2003. Open circles + dashed line represent the deficits predicted from the sediment trap fluxes at 238 m (day of year 65-126) and at 117 m (day of year 134 – 178; Eq. 6) for a scaling factor, $\alpha = 1$. Open squares + dashed line are predicted deficits, with $\alpha = 2.1$ (effectively corresponding to a trapping efficiency of ~50%). Individual points marked with "x" are deficits (0-200 m) obtained from water column ²³⁴Th profiles (Fig. 7); solid square at day-of-year 181 is the deficit integrated to 100 m. Offset in the model-derived deficit curves at day of year 134 corresponds to the fact that the trap fluxes were measured at 238 m during the first deployment and at 117 m during the second and was produced by scaling the curves for the offset between the water column deficit measured in 0-100 m relative to that in 0-200 m in May when the trap turnaround occurred.

Fig. 10: ²³⁴Th flux vs. time at DYFAMED site- 2003. Solid lines represent histogram of measured trap fluxes at 238 m (day of year 65 – 126) and 117 m (day of year 134 - 178). "x" denotes steady-state ²³⁴Th fluxes calculated from measured ²³⁴Th water column deficits to 200 m (Eq. 2). Dashed lines are non-steady state ²³⁴Th fluxes determined from two successive water column ²³⁴Th profiles (Eq. 7). An average of the deficits of casts 2-4 (shown as "*" at day of year ~130) was used as the effective second time point in this calculation.

Fig. 11: Water column ²³⁴Th deficit vs. time at DYFAMED site- 2005. Open circles + dashed line represent the deficits predicted from the sediment trap fluxes at 313 m (day of year 63 - 117; Eq. 6). Individual points (marked with "x") are measured deficits (0-300 m) from water column ²³⁴Th profiles (Fig. 8)

Fig. 12: ²³⁴Th flux vs. time at DYFAMED site- 2005. Solid lines represent histogram of measured trap flux at 313 m (day of year 63 - 117). "x" denotes steady-state ²³⁴Th fluxes calculated from measured ²³⁴Th water column deficits to 300 m (Eq. 2). Dashed lines are non-steady state ²³⁴Th fluxes determined from two successive water column ²³⁴Th profiles (Eq. 7). An average of the deficits of casts 2-6 (shown as "*" at day of year ~70) was used as the effective second time point in this calculation.

Figure 2

Figure 3

Figure 4a

Figure 5

DYFAMED Site 2005

Figure 6

Coastal 1999

Figure 7

Coastal 1999

DYFAMED 2003

DYFAMED 2003

DYFAMED 2005

DYFAMED 2005